On Graphs Supported by Line Sets

نویسندگان

  • Vida Dujmovic
  • William S. Evans
  • Stephen G. Kobourov
  • Giuseppe Liotta
  • Christophe Weibel
  • Stephen K. Wismath
چکیده

For a set S of n lines labeled from 1 to n, we say that S supports an n-vertex planar graph G if for every labeling from 1 to n of its vertices, G has a straight-line crossing-free drawing with each vertex drawn as a point on its associated line. It is known from previous work [4] that no set of n parallel lines supports all n-vertex planar graphs. We show that intersecting lines, even if they intersect at a common point, are more “powerful” than a set of parallel lines. In particular, we prove that every such set of lines supports outerpaths, lobsters, and squids, none of which are supported by any set of parallel lines. On the negative side, we prove that no set of n lines that intersect in a common point supports all n-vertex planar graphs. Finally, we show that there exists a set of n lines in general position that does not support all n-vertex planar graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Just chromatic exellence in fuzzy graphs

A fuzzy graph is a symmetric binary fuzzy relation on a fuzzy subset. The concept of fuzzy sets and fuzzy relations was introduced by L.A.Zadeh in 1965cite{zl} and further studiedcite{ka}. It was Rosenfeldcite{ra} who considered fuzzy relations on fuzzy sets and developed the theory of fuzzy graphs in 1975. The concepts of fuzzy trees, blocks, bridges and cut nodes in fuzzy graph has been studi...

متن کامل

Separated finitely supported $Cb$-sets

The monoid $Cb$ of name substitutions and the notion of finitely supported $Cb$-sets introduced by Pitts as a generalization of nominal sets. A simple finitely supported $Cb$-set is a one point extension of a cyclic nominal set. The support map of a simple finitely supported $Cb$-set is an injective map. Also, for every two distinct elements of a simple finitely supported $Cb$-set, there exists...

متن کامل

D-Spectrum and D-Energy of Complements of Iterated Line Graphs of Regular Graphs

The D-eigenvalues {µ1,…,µp} of a graph G are the eigenvalues of its distance matrix D and form its D-spectrum. The D-energy, ED(G) of G is given by ED (G) =∑i=1p |µi|. Two non cospectral graphs with respect to D are said to be D-equi energetic if they have the same D-energy. In this paper we show that if G is an r-regular graph on p vertices with 2r ≤ p - 1, then the complements of iterated lin...

متن کامل

CERTAIN TYPES OF EDGE m-POLAR FUZZY GRAPHS

In this research paper, we present a novel frame work for handling $m$-polar information by combining the theory of $m-$polar fuzzy  sets with graphs. We introduce certain types of edge regular $m-$polar fuzzy graphs and edge irregular $m-$polar fuzzy graphs. We describe some useful properties of edge regular, strongly edge irregular and strongly edge totally irregular $m-$polar fuzzy graphs. W...

متن کامل

On Diameter of Line Graphs

The diameter of a connected graph $G$, denoted by $diam(G)$, is the maximum distance between any pair of vertices of $G$. Let $L(G)$ be the line graph of $G$. We establish necessary and sufficient conditions under which for a given integer $k geq 2$, $diam(L(G)) leq k$.

متن کامل

Generating All Minimal Edge Dominating Sets with Incremental-Polynomial Delay

For an arbitrary undirected simple graph G with m edges, we give an algorithm with running time O(m|L|) to generate the set L of all minimal edge dominating sets of G. For bipartite graphs we obtain a better result; we show that their minimal edge dominating sets can be enumerated in time O(m|L|). In fact our results are stronger; both algorithms generate the next minimal edge dominating set wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010